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1. Introduction

1.1 Introduction

MIPS (Microprocessor without Interlocked Pipeline Stages) is a popular implementation of a
reduced instruction set computer (RISC). MIPS architectures are typically 32-bit, but 64-bit versions
have been developed in more recent years. It became a widely used processor for embedded systems
design and has been implemented in many consumer electronics products. These included routers,
devices that ran Windows CE, and Sony video game consoles. Due to its popularity in modern
electronics in the 1990’s, it has often been studied in computer architecture courses. It is an effective,
yet simple processor that fulfills the features required in a modern processor but without too much
unnecessary complexity.

Our Senior Design project is a simple 8-bit CPU with onboard SRAM memory. Our instruction
set is loosely based on the MIPS architecture with some significant simplifications. For example, our
architecture only supports 21 simple instructions and instruction size has been reduced to two bytes.
The 512 bytes of on-die memory is used to store both instructions and data.

The purpose of this project is twofold. Our first objective is to demonstrate the utility of our
design. Most microprocessors of this size (the chip only has about 35,000 transistors) will use an
external memory chip to store their program. The onboard memory used here results in a more compact
design. The second goal is to document our design to provide an example for future students. Since our
processor will be much easier to interpret and apply than most modern microprocessors, students can
use it to create simple projects as an entry into embedded systems.

2. System Overview

2.1 Instruction Set

Our processor uses a modified instruction set with 16-bits per instruction, instead of the typical
32-bit instruction set. This system was chosen because our onboard SRAM is only 512 bytes, so
conserving memory is very important. Also, the large instruction size is mostly to accommodate large
register files (32 registers is typical) and large memory spaces. We only need nine bits to specify a
memory location, so even our jump instructions can store the opcode (4 bits), register to compare (3
bits) and absolute address (9 bits) for a total of 16 bits. There was really no need for a larger instruction
size which would have just increased the complexity of our design.

The first thing that should be understood is the various instruction formats. In the below
diagrams, the number represent the bit at the end of the field. For example, the opcode is the four most
significant bits. In a two byte instruction bit are numbered from 0 (LSB) to 15 (MSB). The opcode



therefore has bits numbered from 12 to 15. The text in bold indicates the name of the field, such as
opcode or L6 (a literal value).

Arithmetic Instruction

15 opcode 12 |11 r0 9 |8 rl 6 5 r2 3 2 flags 0

Arithmetic Instruction with Literal (L6)

15 opcode 12 |11 r0 9 |8 L6 3 2 flags 0

Control Instruction

15 opcode 12 |11 r0 9 |8 L9 0

Data Instruction (bit 8 is unused)

15 opcode 12 |11 r0 9 817 L8 0

Shift Instruction

15 opcode 12 |11 r0 9 |8 rl 6 5 unused 3 |2 L3 0

The instructions are fetched in two separate read. There are 21 instructions accessed through a
4-bit opcode and 3-bit flag field on arithmetic and 1O instructions. For example, opcode 0000 is an
arithmetic instruction, with the particular instruction (ADD, SUB, XOR, etc.) determined by the bits in
the Flags field.

The encoding for the various instructions is as follows:



Table 1

opcode instruction opcode instruction
0000 ARITH 1000 INE

0001 LOAD 1001 JGE

0010 SHL 1010 [not used]
0011 SET 1011 NOP

0100 10 1100 JE

0101 STORE 1101 JG

0110 SHR 1110 ROR

0111 STOP 1111 STOP*

*Note that the STOP instruction has two opcodes used for it.

The ARITH instruction breaks down as follows, depending on the Flags field

flags instruction flags instruction
000 ADDI 100 AND

001 ADD 101 NOT

010 SUB 110 XOR

011 OR 111 [not used]

The IO instructions depend on the least significant bit of the Flags field.
If it is 0, the instruction is IN, otherwise the instruction is OUT.
2.1.1. Instruction Description

The basic operation of the instructions is described here. The following section will describe
how the various fields in the 16-bit instruction are used.

The instructions are presented below with this format:
r0, r1, r2 are 3-bit fields that specify one of eight registers.

L9 is a nine bit literal used to specify a jump address.

L6 is a six bit literal used for the ADDI instruction.

L8 is an eight bit literal used for setting a register to a value

L3 is a three bit literal to control the amount of shifting or rotation for SHL, SHR, and ROR
instructions.

Finally, note that for instructions with unused fields (e.g., the STOP instruction only uses the opcode
and has twelve bits unused) these bits are don’t care bits. They can be filled with any sequence of ones
and zeros and the CPU will not care. They are usually padded with zeros, but this is not required.



Table 2: Instruction Description

Instruction Encoding Format Notes

ADD 10, r1, 12 Arithmetic Instruction r0 gets the result of r1 + 12

ADDI 10, L6 Arithmetic Instruction with | 10 gets the result of 10 + L6 (sign extended)

Literal

SUB 10, r1, 12 Arithmetic Instruction r0=rl-1r2

OR 10, r1, 12 Arithmetic Instruction r0 =rl | r2 (bitwise OR operation)

AND 10, r1, r2 Arithmetic Instruction r0 =rl & r2 (bitwise AND operation)

NOT r0, r1 Arithmetic Instruction r0 = ~r1 (bitwise inversion)

XOR 10, 11, 12 Arithmetic Instruction r0 =rl " r2 (bitwise XOR operation)

IN 10 Arithmetic Instruction 10 get the value placed on the 1O input pins

OUT 10 Arithmetic Instruction The value in 10 is placed into the output
register, and appears on the output 1O pins

JE 10, L9 Control Instruction Jump to address L9 if r0 is equal to zero.

JNE 10, L9 Control Instruction Jump to address L9 if r0 is not equal to zero.

JG 10, L9 Control Instruction Jump to address L9 if r0 is greater than zero
(signed comparison)

JGE 10, L9 Control Instruction Jump to address L9 if r0 is greater than or
equal to zero (also signed)

LOAD 10, L9 Control Instruction Load data at address L9 into register r0

STORE r0, L9 Control Instruction Store contents of register 10 at address L9

SET r0, L8 Data Instruction Store the value L8 into register r0

STOP Any Stop the execution of the current program,
until a reset signal. Only the opcode is used
for STOP and NOP instructions. The other
twelve bits are unused.

NOP Any No operation




SHL r0, r1, L3 Shift Instruction Shift register r1 left by L3, store result in r0.
[Shift in zeros]

SHR 10, r1, L3 Shift Instruction Shift register rl right by L3, store result in
0. [Shift in zeros]

ROR 10, r1, L3 Shift Instruction Rotate the bits in r1 to the right by L3
positions, store in 10

2.1.2. Instruction Encoding Examples

The above tables and lists may be a bit confusing, so the following examples will hopefully
clear up any confusion. The complete process of forming an instruction is considered and explained,
step by step.

Example 1
SHR R4, R3, #6

Here R4 indicates register four (don’t confuse with the register fields above such as r0, r1, and
r2). R3 indicates register 3 and #6 is a literal value. The value in register 3 is shifted right six positions
and the result is stored in R4.

From Table 1 above we discover that the opcode for SHR is 0x6. The first field is 0x4 and the
first bit of field r1 is 0. The upper eight bits of this instruction is therefore 0x68, or 104 in decimal. The
first two bits of the lower byte are ‘11°, from register three. The next three bits we leave as zeros
because they are unused. The last three bits are 011, which is our literal ‘6.” The lower byte is therefore
0xC6, which is 198 in decimal.

The complete instruction is therefore 0x68C6. If you were writing a program on an Arduino
like we did to load the SRAM, the first byte loaded is the lower byte, so your data array would be like
this, excluding the other instructions:

int data[16] = {.., .., 198,104, .., .., ....};
Example 2
ADDIR7, #62



Note that this instruction subtracts two from R7 and stores the result back in R7. Remember
that the literal for this instruction is sign-extended, so 62 is binary 111110, which is two’s complement
for negative two.

Table 1 shows the opcode is 0x0. Table 2 tells us to use the Arithmetic Instruction with Literal
format. Field r0 is 111 (R7) and the literal L6 is 111110. Finally, the flags field should be 000 for the
ADDI instruction. The upper byte is therefore 0xOF, or decimal 15. The lower byte is 0xF0, which is
240.

The complete instruction is 0xOFF0, which is loaded into memory as 240, 15 (lower byte first!).
Example 3
OUT R2

This is an IO instruction with opcode 0x4. The Arithmetic Instruction format is used, but only
the first register field is used. The flags field has to be 001 for the OUT instruction and 000 for the IN
instruction. The upper byte is therefore 0x44 = 68. The lower byte is 0x01 = decimal 1.

The complete instruction is 0x4401, which is stored into memory as 1, 68.
Example 4

JG R3, #420

The opcode for JG is 0xD. The register field is 011. The address #420 is 1 1010 0100 in binary.
The upper byte is therefore 0xD7 which is 215. The lower byte is 0xA4 which is 164 in decimal.

The complete instruction is 0xD7A4, or the decimal numbers 164, 215.

Note that the jump and control instructions use a fixed 9-bit address as their target. However, it
is very easy to use the STORE instruction to write another value to the lower eight bits of this address.
This feature can be used to implement subroutines. Simply write the return address to the address of a
jump instruction at the end of the subroutine. When the program execution reaches this point it will
simply return to the location from which it was called (assuming you wrote the correct return address).

2.2 System Architecture

The main components of the MIPS processor include:
Control Unit
SRAM
ALU
Register File



Control Unit

This processor is essentially a massive state machine. Neglecting the SRAM for a moment, the
CPU’s state is completely defined by the contents of the register file, ALU registers, and control unit
registers. The next state is a deterministic result of the current state, and is achieved by the use of only
twenty-four control signals. These control signals are generated by combinational logic which has a
delay less than one-half of a clock cycle.

Some of these control signals are for the internal use of the Control Unit (CU). For example,
the StepReset signal will reset the step counter, which tracks the current instruction’s stage of
execution. Other signals are for the ALU arithmetic logic, such as the three ALU control signals.

The control unit does have some additional responsibilities for the shifting instructions. The
barrel shifter in the ALU can only shift data one bit position per clock cycle. To implement longer
shifts, a small three-bit counter is necessary.

SRAM

The SRAM is of a standard six transistor (6T) design. A simple precharge is applied to the
bitlines when the clock signal is high to prevent a low voltage bitline from flipping the datum stored in
a cell. Loading data into the SRAM is accomplished by a specialized circuit that aids in the sequential
writing of data to the SRAM.

Arithmetic Logic Unit (ALU)

The Arithmetic Logic Unit is responsible for all of the Arithmetic and Logic functions that
most of the operations rely on. The ALU can perform multiple operations which will be discussed in a
later section. Data is clocked into Registers A and B from their respective buses and the appropriate
action is performed based on the input signals from the Control Unit. The ALU also handles the

calculations for the jump instructions.

Register File (RF)

The register file is responsible for storing data in registers specified by the instruction register
for use by the ALU. Since this is an 8-bit processor it reads in 3-bit opcodes and decodes them into the
clocks of each register. This register file can read two registers and write to a single register at once.
Two 3-to-8 decoders help to drive multiplexing for each of the two buses leading out of it. The bus A
decoder is also responsible for gating the clock of the registers to select which register to write to.
Instead of using multiplexers to determine which registers to output to the buses, 8-bit transmission
gates powered by the decoders are used for each register. There are two sets of the 8-bit transmission

gates in total, one for each bus.

We present a top-level schematic with the various parts of the processor labeled on the next page. Note
the precharge circuit used to always define the voltage on BusA. This is important because when all the
tri-state buffers are in the Hi-Z state, the voltage on the bus could float, possibly leading to contention



current in inverters connected to the bus. This could lead to failure of the chip, or fluctuations in the
power supply voltage.

2.3 Functional Analysis and Requirements

Our processor is designed and simulated using Cadence Virtuoso design software with Spectre
and Ultrasim simulation plugins. The processor was designed from scratch on the transistor level and
fabricated on a chip using the MOSIS On Semiconductor 500 nm rules and the C5 CMOS process,
which contains 2 polysilicon layers and 3 metal layers. Therefore, all digital logic and components will
be custom made in order to fit the specifications of our project and the MOSIS design rules. Cadence
allows us to design the chip layout according to those rules and will make checks to ensure that our
layout stays consistent with them. The fabrication process takes considerable time and resources;
therefore, we must ensure that our design is properly simulated so that our fabricated chip works as
intended in our design. We use Spectre and Ultrasim to simulate the schematics of all of our
components to ensure proper operation. Then, Cadence checks that our layouts exactly match the
schematics in order to adhere to our simulation results.

2.4 Trade-offs

We had to consider many trade-offs in order to simplify our processor to fit our time constraints
and resources. Designing an 8-bit processor instead of a 32-bit processor obviously reduces the chip’s
processing power and capabilities. Using a two byte instruction length allows the user to have a
simpler and more streamlined set of instructions, but at the cost of flexibility. We also chose to forego
implementing a pipelined microarchitecture. A pipelined architecture would have improved our
processor’s execution time enormously; however, the added design complexity would not have been
feasible to implement in our project, considering our time limitations. So, we implemented a
multi-cycle architecture instead.

We chose to include on-board memory in our processor. This eliminates many additional
off-chip components, such as an external memory chips. Unfortunately, the SRAM memory is
“volatile” and loses its data after losing power. The programs must therefore be loaded onto the chip
again every time the power is turned on again. This is a severe problem for the commercialization of
this design. Our process technology can not be used to fabricate flash memory cells or other
non-volatile forms of storage.

3. SRAM

3.1 SRAM Design and implementation

The basic SRAM cell stores one bit of information. Our design is the quite common 6T (six
transistors) cell. Although a four transistor cell exists, the resistors it used are difficult to fabricate in a
small space and contribute to static power dissipation. The basic schematic is presented below,
consisting of two cross-coupled inverters and two NMOS access transistors.

10
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Writing data to the cell is accomplished by overpowering the internal transistors to “flip the

'
v

bit.” Only writing a low voltage (actually 0V) will work, because the NMOS pass gate passes a logic
‘0’ better and the PMOS transistor is easier to overpower. Therefore, a low voltage on the “A” bitline
writes a zero to the cell, and a low voltage on the “Ai” bitline writes a logic one into the cell.

Below is the layout of the SRAM cell, with prominent features illustrated. The bitlines run vertically on
Metal3, while the row select and byte select signals run horizontally on Metal2.
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3.2 Precharging circuit

The original plan did not include provision for precharging the bitlines. While this would have
simplified the design, simulations revealed that a bitline at ground potential could actually write data
into another cell when the select line for that cell was asserted. The solution involves “precharging” the
bitlines to a high enough voltage to avoid this problem. Although charging the bitlines to VDD- V,, |
through an NMOS transistor could have worked, I decided to do a more complicated three-transistor
design to get a more precise voltage. The stable output voltage of the below circuit is about 3.24V, with
a 10MEG load to ground. The long length transistors limit the current that can flow, making sure the
maximum sustained current is less than 100uA/via.

When the input is low, the PMOS transistors turn on and move the voltage on the output line toward
3.2V.
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3.3 Write Driver circuit

When data is loaded into the SRAM, the data comes from an external source. In addition, data
is loaded into sequential memory locations, starting at 0x000. Therefore, the address bus is connected
to a nine-bit upcounter, and the write bus is connected to the external input. The external procedure for
writing data to the SRAM is simple. Assert the Load Write Enable signal, and send a reset signal (Reset
is active low) to reset the address counter. The values on the 8 input lines will be written to the SRAM
on active clock edges. Additional schematics can be found in Appendix A.

The write circuit may also be of interest in this design. In the below schematic, powerful 6
micron wide NMOS transistors are strong enough to write data into the SRAM cells. The logic for
writing is simple enough. A high signal at the gate of the NMOS will write a zero into the 6T cell.
Therefore, the write signals need to be inverted first, a task accomplished by the NOR gate. When the
enablei signal is low, the NOR gate is an inverter, and correct data is written into the SRAM. When the
enablei signal is high, the output of the NOR gate is low, and the transistors are off. This allows read
operations to proceed.

13
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4. Control Unit

4.1 Overview

The control unit is probably the most complex part of the processor. It includes the instruction
register (IR), a 3-bit downcounter for the shift instructions, a step counter to track the current stage of
the instruction, and a large block of combinational logic to generate control signals for the entire CPU.
The Control Unit (CU) controls not only the ALU but also the SRAM (read and write signals) and the
internal state of the CU (when to reset the step counter, for example).

The first stage of the control unit determines the current instruction by decoding the 4-bit
opcode and any relevant flags. The main stage of combinational logic determines appropriate control
signals to generate based on the current instruction opcode, the value of the step counter, and whether
the shift counter has reached zero for the shifting instructions.

4.2 Control Signal List

The following list describes the twenty-five control signals, and their purpose:

Number Name Purpose

0 - PC Update - Load a new value into the program counter

1 - PC Loadlmmediate = Load data from IR into PC (for jump instructions)
2 - IR ReadLow Load lower byte of IR from memory

14




3 - IR ReadHigh Load upper byte of IR from memory

4 - ALU LoadA Load ALU registers

5 - ALU_LoadBImmediate Load value from IR (used for ADDI instruction)

6 - RF_ReadEnable Read data from RF to BusA and BusB

7 - ALU_Control[0] one of three ALU arithmetic control signals

8 - ALU_ Control[1] one of three ALU arithmetic control signals

9 - ALU_Control[2] one of three ALU arithmetic control signals

10 - ALU_Output Place ALU register A on BusA for write to RF

11 - RF_WriteEnable Write data on BusA to RF (specified by address A to the RF)
12 - RegisterA_Select Determine which field in IR is used for RF adr. A

13 - StepReset Reset the step counter to begin the next instruction cycle

14 - Input_BusA Read data to BusA from external input pins

15 - Output_BusA Place data on BusA to output register for external 10

16 - Addr_Select Get address for SRAM from IR instead of PC (for load and
store instructions)

17 - ReadMem_Enable Read memory contents onto BusA (for LOAD instruction)
18 - WriteMem_Enable Write memory from BusA (for STORE instruction)

19 - ALU_Shift[0] Control signal for ALU barrel shifter

20 - ALU_Shift[1] Control signal for ALU barrel shifter

21 - Pause Step Pause the step counter for the shifting instruction (these
instruction take a variable amount of time to complete, depending on the number of times the shift is
performed)

22 - GateClock Stop the chip for the STOP instruction (prevent further action)
23 - ALU LoadCounter  Load the Shift counter from the Flags field of the IR

24 - RF Writelmmediate =~ Write to the RF from the immediate value in IR, not BusA

(used for SET instruction)
4.3. Control Signal Block Diagram

The following diagram contains a visual block diagram that describes many of the control
signals. Some parts, such as the 1O circuitry, are missing.

15
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5.1 Design and Implementation

Registers

5. Register File

Eight registers composed of 8 D flip flops each, which are in turn composed of 18 transistors
each. The majority of the transistors in the register file are of size 6 microns for each PMOS and 3

microns for each NMOS.
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There are two decoders, one for address A and another for address B. The outputs of each get

sent through an inverter in order to send complimentary signals to the inverted transmission gate
enables. The address A decoder is also responsible for gating the clocks of each register to enable
writing to that register, as only the registers specified by address A will be written to.

Below is the layout of the first two outputs of the decoder. The bitlines run vertically on metal

3 and the input lines run horizontally on metal 2.
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Gets sent into the CLK and CLK_Invert pins of a register to enable writing.
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Transmission Gates & Output Buffers

The data from each register is sent into an 8-bit transmission gate (one 1-bit transmission gate
for each D Flip-Flop in a register) and then out through an output buffer onto one of the address buses.
The decoder outputs are sent into the transmission gate enables to decide which register’s data gets sent
to the address bus.
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Output Buffer

6-by-3 micron inverters followed by 12-by-6 micron inverters are used to drive the output bus.
The transmission gate is turned on to read from the bus by RF ReadEnable sent by the control unit.
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The layout of the first two bits of the register cell is below. The bitlines and control signals run
vertically through the cell on metal 3 and transmission gate enables run horizontally on metal 2.
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5.2 Alternatives and Trade-Offs

A register file is usually implemented with multiplexers. In this case, two 8 to 1 multiplexers
would have been used to choose which register’s data would be output onto the buses. However, by
replacing the multiplexers with eight 8-bit transmission gates for each bus, we were able to save 256
transistors and the data only has to go through one level of logic instead of three.

6. ALU

6.1 Design and Implementation

The major design choice for the ALU was to decide which operations we wanted it to perform.
We decided that we wanted to include a Barrel Shifter in the design, which called for two types of
control signals. There are five control signals which are comprised of three bits for ALU_Control and
two bits for ALU_Shift. The operations that the ALU can perform include the following:

ALU_Control:

000 - AND 100 - Pass Register A
001 - OR 101 - NOT
010 - ADD 110 - XOR

011 - SUBTRACT

ALU_Shift:
00 - Pass Data
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01 - Shift Left
10 - Shift Right
11 - Rotate Right

The ALU is also responsible for generating the signals for the jump instructions. It can return a
true or false value for whether the value in Register A is zero, or whether it is greater than zero. Other
components of the ALU include standard logic gates for AND, OR, NOT, and XOR.

The largest component of the ALU is the Full Adder. We designed an And-Or-Invert (AOI)
Adder in order to save layout space. A Carry Look-ahead Adder was our first choice because it
performed the operations with a minimum amount of clock cycles, but it required too large of a space
to fit on our chip. The Adder has input and output signals for Input A, Input B, Carry In, Carry Out,
and Sum. Each Carry In bit is generated from the previous bit’s Carry Out, except for bit 0. For
addition, the first bit’s Carry In is 0, so the first sum is A + B + 0. Subtraction is achieved through
binary two’s complement where A - B=A + B’ + 1. To accomplish this with our adder, the B bit is
inverted, and then the first bit’s Carry In is 1

The final component of the ALU is the Barrel Shifter. Each bit is designed with a 4-1
Multiplexer which feeds in a value based on the operation to be performed. If it is a left shift, then the
previous bit’s value is shifted into the current bit. If it is a right shift, then the next bit’s value is shifted
into the current bit.

Overall ALU Schematlc Broken 1nto 3 images
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The next section will cover a few simulations demonstrating the operation of the ALU.

ADD Simulation

The following is a simulation for four addition operations, each occurring every 100 ns.

Cw=3ul .
I5§Z‘n_
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A few analyses of the simulations are as follows:

Time: 0-100 ns

A =01100100= 100 (in decimal)
B =10010001 = 145 (in decimal)
Cin=0

S=11110101 = 245 (in decimal)
Cout=0

Time: 300-400 ns

A =10011011 = 155 (in decimal)
B=01101110 =110 (in decimal)
Cin=1

S=00001010

Cout=1

Since we have Cout = 1, we bring the | in front of the S, giving us a value of
Sum = 100001010 = 266 (in decimal)
AND Simulation

Using the same values for A and B, we simulate the AND operation and the results are below:
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It can be seen that the ADD function works properly.

7. Project Results

A PCB circuit board was designed using Altium Designer. Components were purchased and
soldered to the manufactured PCB. When our chip was received from MOSIS we tested it and found
that it mostly worked. There was only one issue with the output pins being driven to VDD for one
clock cycle every time an output command was executed. This problem is fixed in the design files we
have produced now. The solution was to add a single inverter to invert the clock signal and eliminate
the timing issue.

Overall our Senior Design project was successful.

8. Prototype Cost Estimate

8.1 Cost Estimate

Commercial and personal microchip fabrication prices can cost a very large amount of money.
We will be fabricating our microchip through MOSIS. Since we are doing an educational project,
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MOSIS will be fabricating the chip completely for free. The only cost on our part will be to fill out a
survey response commenting on the quality of the operation of the chip in order to help MOSIS perfect
their products.

Other costs incurred for the project will be the price of a PCB board, which will depend on the
size of the board, and the price of the microcontroller that we will be using to test our chip.

If this were a commercial project, we can make an estimate of how much this prototype would
cost. Using round numbers, our team spent well over 200 hours designing this chip. At a wage of
$30/hour, this is a cost of $6,000. Dr. Baker mentioned a commercial cost of $6,500 for 40 chips,
without packaging. Additional costs for the Testing, such as the PCB board can be estimated as $500.
In very round numbers we therefore estimate a commercial cost for this prototype in the range from
$13,000 to $15,000, assuming no serious additional costs are incurred.

Appendix A

A.1 Control Signal Generation For All Instructions

This is an internal working document used to describe the exact control signals required
at each step of an instruction. Note that the first two steps (step0 and stepl) are always used to
fetch the low and high bytes of the instruction.

This document will list the outputs asserted by the control unit for each instruction cycle. The
fetch cycle is listed first, and is assumed for all instructions. The Step counter value is listed
on the left as three binary digits.

Special signals not listed in Datapath_Comments are Step_Reset, which resets the control
unit’s step counter, and Step_Pause, which will prevent the step counter from automatically
incrementing (used for multi-step instructions like the shifting instructions).

Two additional control signals need to be added to the datapath. The Input_BusA and
Output_BusA signals will read and write data from external ports to bus A.

Note about comparison instructions

These instructions use the “Register Instruction Format” with one register operand and a 9-bit
immediate constant. The operand register is compared to zero and if the condition is true,
jumps to the memory location indicated by the immediate value.

[Alternative design: compare registerA with literal zero, which will eliminate the extra control

line and simplify these instruction]
USE THIS DESIGN!
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IS_GREATER is the contents of RegA (inside ALU) are greater than zero (signed).
IS_ZERO is asserted when the contents of RetB are zero.

Note for shift and rotate instructions: there is a 3-bit down counter within the ALU that is
loaded with ALU_LoadCounter from the lower 3 bits of opcode. When this reaches zero it
sends signal COUNTER_ZERO.

RF_Writelmmediate is another new control signal that directs the RF to load from the lower 8
bits of the IR instead of from BusA.

IMPORTANT:

The RF_WritelImmediate signal activates a TG that puts the signal on the BusA.
This is a very important point!!

/[END IMPORTANT

Fetch Cycle

Step Ctr. Signals asserted for each step

000 - PC_Update, PC_ReadLow ;We do not need ReadMem_Enable, because we
use separate enable logic to load the PC

001 - PC_Update, PC_RealHigh ; Load second byte into IR.
ADDI

010 - ALU_LoadA, ALU_LoadBImmediate, RF_ReadEnable

011 - ALU_Control[1] ; Add code sent to ALU
100 - ALU_Output, RF_WriteEnable, RegisterA_Select, Step_Reset
ADD

010 - ALU LoadA, RF_ReadEnable ;not loading immediate this time
011 - ALU_Control[1]

100 - ALU_Output, RF_WriteEnable, RegisterA_Select, Step_Reset
SUB

010 - ALU_LoadA, RF_ReadEnable

011 - ALU_Control[1], ALU_Control[0]

100 - ALU_Output, RF_WriteEnable, RegisterA_Select, Step_Reset
AND

010 - ALU LoadA, RF_ReadEnable

011 - ALU_Control[2]

100 - ALU_Output, RF_WriteEnable, RegisterA_Select, Step_Reset
OR
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010 - ALU LoadA, RF_ReadEnable

011 - ALU_Control[2], ALU_Control[0]

100 - ALU_Output, RF_WriteEnable, RegisterA_Select, Step_Reset
NOT

010 - ALU_LoadA, RF_ReadEnable

011 - ALU_Control[0]

100 - ALU_Output, RF_WriteEnable, RegisterA_Select, Step_Reset
XOR

010 - ALU LoadA, RF_ReadEnable

o011 - ALU_Control[2], ALU_Control[1]

100 - ALU_Output, RF_WriteEnable, RegisterA_Select, Step_Reset
IN

010 - RF_WriteEnable, Input_BusA, Step_Reset, RegisterA_Select [Why? Because

for convenience, the output of the arithmetic instructions is to the first register....

ouT
010 - RF_ReadEnable, Output_BusA, Step_Reset, RegisterA_Select[?] ;Same
goes for OUT command.

JE

010 - RF_ReadEnable, ALU_LoadA, RegisterA_Select

011 - (if 1IS_ZERO) Step_Reset ;if regA is NOT zero, we stop
011 - (if IS_ZERO) PC_Update, PC_Loadlmmediate, Step_Reset

;if we are at zero, load IR

JG

010 - RF_ReadEnable, RegisterA_Select, ALU_LoadA

011 - (if 1S_GREATER) Step_Reset

011 - (if IS_GREATER) PC_Update, PC_Loadlmmediate, Step_Reset

; Jump to new location

JGE

010 - RF_ReadEnable, ALU_LoadA, RegisterA_Select

011 - (if 1S_GREATER && !IS_ZERO) Step_Reset

011 - (if IS_GREATER || IS_ZERO) PC_Update, PC_Loadlmmediate, Step_Reset
JNE

010 - RF_ReadEnable, ALU_LoadA, RegisterA_Select

011 - (if IS_ZERO) Step_Reset
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011 -

LOAD
010 -

(if 1IS_ZERO) PC_Update, PC_Loadlmmediate, Step_Reset

AddrSelect[address from IR], ReadMem_Enable, RegisterA_Select,

RF_WriteEnable, Step Reset

NOP
010 -

ROR

010 -
011 -
011 -
Step_Reset

SET
010 -

SHL

010 -
011 -
011 -
Step_Reset

SHR

010 -
011 -
011 -
Step_Reset

STOP
010 -

STORE
010 -

Step_Reset [?] ;possibly move to step 4 (100) for greater delay?

ALU LoadA, RF_ReadEnable, ALU LoadCounter
if /\COUNTER _ZERO) ALU_Shift[0], ALU_Shift[1], PauseStep
if (COUNTER_ZERO) ALU_Output, RF_WriteEnable, RegisterA_Select,

RF_Writelmmediate,RegisterA_Select, Step_Reset, RF_WriteEnable

ALU_LoadA, RF_ReadEnable, ALU_LoadCounter
if /{COUNTER_ZERO) ALU_Shift[0], PauseStep
if (COUNTER_ZERO) ALU_Output, RF_WriteEnable, RegisterA_Select,

ALU_LoadA, RF_ReadEnable, ALU_LoadCounter
if /{COUNTER_ZERO) ALU_Shift[1], PauseStep
if (COUNTER_ZERO) ALU_Output, RF_WriteEnable, RegisterA_Select,

GateClock

WriteMem_Enable, AddrSelect, RF_ReadEnable, Step_Reset,

RegisterA_Select

Simulation example of entire chip

The following simulation runs the following code:

0x00

IN RS

0x02 SET R6, 0xf3
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0x04 NOT R2, R6

0x06 XOR R3, R2, R5

0x08 JG R3, 0x0C 0 *
0x0A OUT R3

0x0C STOP

*This jump starts executing at 3.4us, and jumps to the stop instruction, which loads opcode at
2.9us, causing the control unit to generate the GateClock signal.
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